New AI Approach to Improve Existing Fine-Tuning Methods

Published on 2 August 2023 at 08:21

 

This paper addresses a novel approach called SyntHesIzed Prompts (SHIP) to improve existing fine-tuning methods. 

 

Fine-tuning: After pre-training, the model is then fine-tuned on a smaller, task-specific dataset. This involves continuing the training process on the new data, often with a smaller learning rate. The idea is to tweak the generalized knowledge the model has gained from pre-training to make it more applicable to the specific task.

 

The problem the researchers are tackling is the scenario where some classes have no data. They aimed to train a generative model that can synthesize features by providing class names, which enables them to generate features for categories without data. 

 

The paper proposed a novel SyntHesIzed Prompts (SHIP) approach to improve existing fine-tuning methods, particularly in scenarios where some classes have no data. The method achieved state-of-the-art performance on various tasks by synthesizing features for categories without data and fine-tuning CLIP using both original labeled and newly synthesized features. The paper acknowledged additional training costs as a limitation and expressed an intention to explore the applicability of SHIP in dense prediction tasks in future research.

 

Overall, the paper presents a significant contribution to the field by addressing the challenge of data scarcity for certain classes and enhancing the performance of CLIP fine-tuning methods using synthesized data.

 

 

 

         本文提出了一种称为合成提示 (SHIP) 的新颖方法,用于改进现有的微调方法。

 

         微调:预训练后,模型会在较小的特定于任务的数据集上进行微调。 这涉及到继续对新数据进行训练,通常采用较小的学习率。 这个想法是调整模型从预训练中获得的广义知识,使其更适用于特定任务。

 

         研究人员正在解决的问题是某些类别没有数据的情况。 他们的目标是训练一个生成模型,该模型可以通过提供类名称来合成特征,这使他们能够在没有数据的情况下为类别生成特征。

 

          该论文提出了一种新颖的 SyntHesIzed Prompts (SHIP) 方法来改进现有的微调方法,特别是在某些类没有数据的情况下。 该方法通过合成没有数据的类别特征并使用原始标记和新合成的特征微调 CLIP,在各种任务上实现了最先进的性能。 该论文承认额外的训练成本是一个限制,并表示有意在未来的研究中探索 SHIP 在密集预测任务中的适用性。

 

          总体而言,本文通过解决某些类别的数据稀缺挑战并使用合成数据增强 CLIP 微调方法的性能,对该领域做出了重大贡献。

 

 

Add comment

Comments

There are no comments yet.